Semi-parametric Exponential Family PCA
نویسندگان
چکیده
We present a semi-parametric latent variable model based technique for density modelling, dimensionality reduction and visualization. Unlike previous methods, we estimate the latent distribution non-parametrically which enables us to model data generated by an underlying low dimensional, multimodal distribution. In addition, we allow the components of latent variable models to be drawn from the exponential family which makes the method suitable for special data types, for example binary or count data. Simulations on real valued, binary and count data show favorable comparison to other related schemes both in terms of separating different populations and generalization to unseen samples.
منابع مشابه
Semiparametric and Nonparametric Gene Mapping
We review gene mapping, or inference for quantitative trait loci, in the context of recent research in semi-parametric and non-parametric inference for mixture models. Gene mapping studies the relationship between a phenotypic trait and inherited genotype. Semi-parametric gene mapping using the exponential tilt covers most standard exponential families and improves estimation of genetic effects...
متن کاملPRE-PRINT (Do Not Redistribute) Simple, Robust, Scalable Semi-supervised Learning via Expectation Regularization
Although semi-supervised learning has been an active area of research, its use in deployed applications is still relatively rare because the methods are often difficult to implement, fragile in tuning, or lacking in scalability. This paper presents expectation regularization, a semi-supervised learning method for exponential family parametric models that augments the traditional conditional lab...
متن کاملBayesian Exponential Family PCA
Principal Components Analysis (PCA) has become established as one of the key tools for dimensionality reduction when dealing with real valued data. Approaches such as exponential family PCA and non-negative matrix factorisation have successfully extended PCA to non-Gaussian data types, but these techniques fail to take advantage of Bayesian inference and can suffer from problems of overfitting ...
متن کاملOptimal Shrinkage Estimation of Mean Parameters in Family of Distributions with Quadratic Variance.
This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semi-parametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in ...
متن کاملA semi-parametric estimation of mean functionals with non-ignorable missing data
Parameter estimation with non-ignorable missing data is a challenging problem in statistics. The fully parametric approach for joint modeling of the response model and the population model can produce results that are quite sensitive to the failure of the assumed model. We propose a more robust modeling approach by considering the model for the nonresponding part as an exponential tilting of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004